
B1388 R I C H A R D E. NORTON 

01 s2-s(M1
2+M2

2+m1
2+m2

2--2fxl
2)+(M1

2'-M2
2)(ml

2-m2
2) 

cos0i=—-= , (Al) 

a2 ^ - ^ ( M 3
2 + M 4 2 + ^ I 2 + W 2 2 - 2 M 2 2 ) + ( M 4 2 - M 3

2 ) ( W 1
2 ~ W 2 ^ 

cos02=—= , (A2) 
ft [A(^if3

2,M4
2)A(^m1

2,m2
2)]1/2 

where the symbols are defined in Fig. 5 and Eq. (1). If the two parts in Fig. 8 are now put together to form 
the transition in Fig. 7(a), and if <j> is defined to be the angle between Mi and Af4, then 

COS<£= COs(<£i+02) = COS01 COS02— [ ( 1 —COS20i) (1~COS202)]1 / 2 . (A3) 

We now look at Fig. 5, and express t in terms of s, cos<£, and the Mt-
2, 

t= (l/2s){-s2+s(M1
2+M2

2+Md
2+Mf)-(M1

2~Mfi . (A4) 

Substituting (A1)-(A3) into (A4) and replacing s, t and the Af*2 by x, y, and the X{ according to Eqs. (9a), 
(9b), there results Eq. (11). 

The remark at the end of part B, Sec. I l l can also be easily verified. For x outside both the intervals 
Li2~<x<Lu+ and L2z~<x<Lzi+

i then cos$i and cos$2 defined in (Al) and (A2) are both larger than unity 
in magnitude. Therefore, by (A3), so is cos</>, and y+ does not lie in the physical region |cos</>| < 1 . 
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A study is made of the depolarization of polarized, relativistic fermions (spin J) passing through matter. 
The final polarization of the projectile shows two features, (i) a rotation of the polarization vector so that 
it does not have the same direction as the initial polarization with respect to the initial or final momenta : 
rotation; (ii) an unpolarized component so that the magnitude of the polarization has diminished: shrinkage. 
We consider the scattering of the incident polarized fermion off unpolarized target electrons and nuclei 
to lowest order in a. Whereas to this order no polarization can be produced, i.e., the magnitude of the polari
zation vector cannot increase, the magnitude of the spin vector can decrease if the target has spin. General 
formulas are presented for the spin-J particles scattered electromagnetically from an unpolarized target with 
arbitrary spin in terms of form factors. Numerical results are presented for processes (i) and (ii) in the 
cases of positrons and muons scattered by unpolarized electrons. Process (ii) is proportional to t2 (for small 
momentum transfer t). If one expands the expressions for the polarization phenomena keeping only the 
linear term in t, then the shrinkage (ii) vanishes and the rotation effects (i) all reduce to those for the pure 
Coulomb scattering case. (As is well-known the depolarization due to Coulomb scattering is negligible for 
small-angle scattering.) However, if one is concerned with particles scattered into a sizeable solid angle, then 
(a) the rotation effects in, e.g., positron-electron scattering become enormously larger than that given by 
Coulomb scattering; (b) they become strongly dependent on the relative orientation of the incident polariza
tion vector: much larger rotations occur for transversely polarized beams; (c) one cannot omit the contribu
tion from the annihilation diagram compared to that from the direct one-photon exchange; (d) and most 
important the depolarization due to shrinkage is comparable to the rotational effects. In multiple scattering, 
the shrinkage is a cumulative effect whereas the rotational contribution to depolarization is a random 
walk process. 

I. INTRODUCTION not explain the large depolarizations found in the experi-

DETAILED knowledge of the depolarization of ments of Picket al}'2 However, our results show a 

polarized, relativistic fermions (spin J) passing *k\ Dick, L. Feuvrais, and M. Spighel, Phys. Letters 7, 150 
,, K ^ • r * • 4. 4. X li 4.- i (1963); S. Bloom, L. A. Dick, L. Feuvrais, G. R. Henry, P. C. 
t h rough m a t t e r is of cur ren t in teres t . Our theoret ical Macq, and M. Spighel, ibid. 8, 87 (1964); L. Dick, L. Feuvrais, 
s tudies (which neglect b remss t rah lung , see Ref. 21) do L. DiLella, and M. Spighel, ibid. 10, 236 (1964). % • 

2 However, we do get agreement with the small /* depolarization 
* Supported in part by the U. S. Air Force through Air Force observed experimentally. Polarized muons suffer negligible de-

Office of Scientific Research Grant AF-AFOSR-62-452. polarization in slowing down from ^ 7 0 to ~ 1 0 MeV in any 
t Supported by U. S. Atomic Energy Commission. type of moderator [D. D. Yovanovitch (private communication)]. 
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number of very interesting features which have not 
been explicitly discussed in previous calculations.3-6 

(In particular, keeping only the lowest order term in 
the momentum transfer variable,5 /, throws away all 
the effects of the spin of the target electrons or nuclei.) 

We will be concerned with the scattering of an in
cident beam of polarized, relativistic fermions off an 
unpolarized target (the final state of the target is not 
observed). The simple lowest order (in a) processes we 
calculate cannot, of course, produce polarization, i.e., 
increase the magnitude of the polarization vector of 
the projectile (see Appendix). We wish to emphasize 
strongly, that even to this order in a the final polariza
tion state of the projectile shows both the following 
features: (i) a rotation of the polarization vector so 
that it does not have the same direction as the initial 
polarization with respect to the initial or final momenta; 
(ii) an unpolarized component is produced so that the 
magnitude of the polarization has diminished. The 
production of this unpolarized component is due to 
the interaction with the randomly oriented spin of the 
target. We will distinguish these effects by calling (i) 
rotation, and (ii) shrinkage. 

A rotation of the polarization vector can take place 
in scattering from any kind of target (spinless, with 
spin polarized or unpolarized) but a shrinking can 
occur only when the target has spin. Then the random
ness of phase present in the target system produces 
a final state of the projectile which has a random com
ponent. A well-known result in scattering theory is that 
the Born approximation cannot produce polarization in 
the final state if the initial state (of both spin-J par
ticles) is unpolarized.7 We find the interesting result that 
the Born approximation can shrink the polarization 
vector of the projectile. 

Our results follow directly from lowest order per
turbation theory and illustrate rather nicely (and 
perhaps pedagogically) some familiar principles of 
quantum mechanics and relativistic kinematics. A re
view of the relevant spin formalism is presented in 
Sec. II. Presenting things as simply as possible we 
start in Sec. I l l with a discussion of the scattering of a 
fermion from a nonidentical unpolarized target by one-
photon exchange. This example includes the scattering 
of muons from electrons and elastic or inelastic scatter
ing of muons, electrons or positrons from an unpolar
ized (or spinless) nucleus. It demonstrates both the 
shrinking and rotation effects. In Sec. IV we give the 
analogous formulas for electron-electron (Miller) and 

3 M . E. Rose and H. A. Bethe, Phys. Rev. 55, 277 (1939). 
L. J. Weigert and M. E. Rose, Nucl. Phys. 51, 529 (1964), have 
given a general discussion of polarization phenomena for electron-
nucleus scattering, emphasizing the effects of nuclear structure. 

4 G. W. Ford and C. J. Mullin, Phys. Rev. 108, 477 (1957). 
6 C. Bouchiat and J. M. Levy-Leblond, Nuovo Cimento (to be 

published). 
6 H. Olsen and L. C. Maximom, Phys. Rev. 114, 887 (1959). 
7 We have in mind only Hermitian interactions. 

positron-electron (Bhabha) scattering. Because of the 
complexity of the formulas, we present in Sec. V some 
numerical results obtained from the analyses of Sees. 
I l l and IV. A brief discussion of multiple scattering is 
given in Sec. VI. 

The fractional decrease in magnitude or shrinkage 
of the incident polarization vector for small t (and 
sizeable incident laboratory energy E) is proportional to 

f/EA for longitudinal polarization; 

t2/E? for transverse polarizations. (1) 

If we expand all the polarization phenomena expressions 
keeping only the linear term in the momentum transfer 
variable /, then the shrinkage vanishes. In addition 
the rotation effects all reduce to the pure Coulomb 
(no energy loss) scattering case: the fraction of the 
incident polarization vector in the scattering plane 
which does not follow the scattering angle in a single 
collision is given by8 [see Eq. (29)] 

^2/(2£2+IO(£2-^2), (2) 

where m is the mass of the projectile. The particular 
conditions of the Dick experiments,1 namely slowing 
down of 50-MeV positrons to 10 MeV in a Be absorber 
and observing only the positrons in the very forward 
direction, allow us [using (2)] trivially to make an 
upper estimate of the depolarization. This estimate is 
orders of magnitude too small to explain Dick's results. 
This result (that for small scattering angles the de
polarization due to Coulomb scattering is negligible) 
is known.3-5 

On the other hand, if one accepts particles scattered 
into a sizeable angle, then (a) the rotation effects in 
Bhabha scattering become enormously larger than that 
given by the Coulomb scattering; (b) they become 
strongly dependent on the relative orientation of the 
incident polarization vector with respect to the incident 
momentum: much larger rotation for transversely than 
for longitudinally polarized beam; (c) one cannot omit 
the contribution from the annihilation diagram com
pared to that from the direct one-photon exchange; 
(d) and most important the depolarization due to 
shrinkage is comparable to the rotational effects, i.e., 
one gets a real decrease in magnitude of the polariza
tion vector and not just a change in direction. These 
results are all made evident by the numerical calcula
tions presented in Sec. V. 

We include in an Appendix, an expression of the 
polarization resulting from the most general possible 
collision of a spin-J particle with an arbitrary, un
polarized, target. This shows both the limitations and 
the general features of the results obtained with the 
Born approximation. 

8 We use units h~c** 1. 
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(0,0,0,1) 

/ (0,0,1,0) 

x (0,1,0,0) 

FIG. 1. Projectile with initial four-momentum p1 and polariza
tion a1 is incident along x axis and scatters by angle 0 in x-y 
plane to pF and aF. 

II. REVIEW OF SPIN FORMALISM 

For a spin-J particle we shall describe the polariza
tion by the usual covariant density matrix8"10 

p=£(l±<py5). (3) 

a 2 and a 3 are normal11 to p: 

aiJ=(#7,EJ,0,0)/f», 
a2

J= (0,0,1,0), (9) 

o,7= (0,0,0,1), 
and 

<*iF= (PF, EF cos<9, EF sin0, 0)/m, 
a2

F= (0, -sin0, cos0, 0), (10) 

<z3
F= (0,0,0,1). 

Since we will be considering scattering processes only 
to lowest order in a, the magnitude of a cannot increase. 
Then for this situation (see Appendix for the more 
general relation) we can express the transformation of 
a1 into aF by the collision process in terms of 

The polarization four-vector a satisfies the subsidiary 
condition 

a-p=0, (4) 

[PiF] 
P2

F 

J W 
= 

[Mn Mu 0 ] 
M21 M22 0 

I 0 0 MJ 

(PI1) 
P 2 7 

UyJ 
where p is the four-momentum of the particle (with 
mass m). In general, 

0 < a 2 < - l , (5) 

where a2= — 1 corresponds to complete polarization. 
These relations are simple generalizations of the familiar 
2X2 matrix operator §(l+P-<r), 0<(P) 2<1 which de
scribed an arbitrary mixture of polarized and unpolar-
ized spin-J particles. This expression holds relativisti-
cally but only in the rest frame of the particle where 
a=(0,P). 
feThe polarization vector a can be expressed as a 
linear combination of three [due to condition (4) ~] 
orthonormal four-vectors a*: 

a=YL Pidi, (6) 

where ai reduces to a unit space vector in the rest 
frame of the particle. The familiar covariant spin pro
jection operator can be written 

S = J ( l±a i r 5 ) . 

Consider a two-body scattering process, Fig. 1, where 
the incident particle with9 

^ = ( 2 ^ , 0 , 0 ) , (7) 

in the laboratory system scatters to 

pF= (EF,pF cosd,pF sin(9,0). (8) 

Then we choose our a^ such that ai is parallel to p and 

9 Our metric is 1, — 1 , — 1, — 1 , and Y6
2=-f-l- We use (—) in 

Eq. (3) for electrons, (+ ) for positrons. Superscript 1(F) denotes 
initial (final) states. 

10 R. P. Feynman, Quantum Electrodynamics (W. A. Benjamin 
and Company, New York, 1961). See also: L. Michel and A. S. 
Wightman, Phys. Rev. 98, 1190 (1955). 

(ID 

The fact that Mu and M21 are not zero represent what 
we have called rotation. Shrinkage is given by the 
expressions 

5,->0, i= 1,2,3 (12) 
where 

5l=l-(Jlfi1
2+Jf212)1/2, 

S2=l-(M2i2+M222)1/2, (13) 

53=1—If 33. 

The M matrix and hence the rotation depends on the 
coordinate system Qme could of course find a coordinate 
system different from (10) such that M is diagonal]. 
One must be careful to work in the laboratory system in 
particular for the problem of multiple scattering (see 
Sec. VI). It is possible and sometimes convenient to 
work in the center-of-mass system (see Sec. V); how
ever, considerable care must be taken in defining the 
directions of polarization. The connection between the 
laboratory system and the center-of-mass system, cm., 
is as follows. The laboratory and cm. frames are 
related by a Lorentz transformation along the x axis 
with velocity u. Denoting the cm. quantities by primes 
we have 

pF=LpF'=((EF'+upF' cos0'> 

(pF 

(1-01'2 

cosd'+uEF') , pF' sin0, 0 J, (14) 
(\-u2Y» / 

also 
a / = Z a / ' . (15) 

However, two successive Lorentz transformations not 

11 The at are just Lorentz transforms of unit vectors in the rest 
frame of the particle. The functional form of Eqs. (9) and (10) 
is the same in the cm. system, however, all quantities are primed, 
i.e., at, etc. 
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in the same direction are equivalent to a single Lorentz mass M with arbitrary spin but unpolarized. The final 
transformation plus a rotation so that12 Lax

F' is not state n of the target is arbitrary (elastic or inelastic) 
parallel to p^ as is required by our definition (10) of but experimentally unmeasured. Given a1 we are in-
aiF. There is an additional rotation R in the x-y plane terested in determining aF as a function of E1, EF and 
relating a/ and at*". Let 

=W; 
then it is easy to show that 

fa i^ 
G2F w\ = RL 

\a^ 
a2

F' 

Ui''J 
= 

f cos5 sin5 0] 
—sin5 cos5 0 

0 0 1J 
a2* 

(16) 

(17) 

where 

r 2u / i \ i i / 2 

D=\ l+^2cos20'+— cosd'-u2ll—-J , 

the scattering angle 0, or the momentum transfer 
variable 

tef^W-p*)2. (21) 
Equivalently we have seen that we may calculate the 
cross section da/dQ(aiF

ya/) for initial spin of projectile 
in "direction" a/ and final spin in direction atF. This 
is given by 

do- 1 
—(<*< W ) * ~(PW I 3» I PF<HF)*(PF<HF I h IPW) 
dti t2 

cos5= [ 1 + (u/v') cos0']/£>, 

sin5= (-u/v')(l-v'2yi2(sind')/D, 

(18) X 
initial spin of target 

and all n 

{PT\J n\n)*(n\Jv\pT) 

and i), — pF'/EF\ The polarization M matrices are The second-rank tensor, 
related by the same rotation R: 

1 

t2 
— •*• [iv1- y.v • (22) 

M=RM( 

and thus: 
(19) initial spin of target 

and all n 

{pT\JM*{n\Jv\pT), 

fpl ' l 
i V 

[P3
F] 

= R 
(PiF") 
P,F' 

[P,F'} 

must be constructed from the four vectors pT and q. 
Since 

qnFflv=qvFfiV=0y 

Note, however, that St= S/. Let Ar/tfOfeV/) be the ^ m o g t a l f o r m of r m u g t ^ 
differential scattering cross section for initial spin m 
"direction" a/, Eq. (9), and final spin in "direction" 
<HF, (10), then 

T^— guvG+pTupTpF, (23) 

(d*/dti) (a/1,a/) - (da/dti) ( - a / , a/) 
Af»j = . (20) electron) 

(da/d^)(ai
F,aj

I)+(da/dQ)(-ai
F, af) electron; 

where G and F are functions of t and #-#r. Noting that 
the projection operator for the state \pa,i) is (for an 

[In calculating d<r/dtt(aiF,a/) one projects out the 
spin in direction diF, e.g., by using the projection 
operator ( l+a /7 5 ) /2 . ] 

III. DEPOLARIZATION PHENOMENA DUE TO 
GENERAL ONE-PHOTON-EXCHANGE 

DIAGRAM 

L(p+m)/2m3i(l-aiyh), 

we have for the tensor describing the projectile 

pI-\-m\ (A — O/7B> 

/pF+m\/i-aiFy5\ x(-srX-r-> (24) 
In this section we treat the general one-photon-

exchange diagram shown in Fig. 2 where p and a, 
Eqs. (7)—(10), represent9 the momenta and polariza- The expression for positron scattering can be obtained 
tion vectors of the polarized electron (positron or muon) by the substitution rule pT*->—pF and diF <-» —a/. 
projectile. pT is the initial momenta of the target of Contracting (23) and (24) we obtain 

da 1 1 
— ( a * V / ) « [ G { 2 m 2 + / - 2 ^ 2 ( a / - a / ) } + F { 2 ( ^ 
dQ t2 4,m2 

- M 2 ( ^ - a / ) ( ^ V ) + * ( ^ ^ ^ (25) 
12 E. Wigner, Rev. Mod. Phys. 29, 255 (1957). 
13 Y. S. Tsai, Proceedings of the International Conference on Nucleon Structure, June 1963 (Stanford University Press, to be 

published). 
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As expected, the eross section (25) for electron-nucleus scattering is the same as for positron-nucleus scattering. 
We see that the spin-dependent terms of one-photon-exchange cross section, (25), are bilinear in a^ and &^. 
Thus, summing over d = a / ( ± a y / ) leaves (25) independent of initial (final) spin orientation. Hence, as expected, 
the one-photon-exchange process cannot be used as a spin polarizer or analyzer. 

The polarization M matrix elements, (20), are 

+2(p!-pT)(pT-ain(pF-a/)+2(pF-pT)(pi-a/)(pT-a/)}yiG(2m*+t)+F(2(pi-pT)(pr-pT)+±Mn)l. (26) 

The simplest effect to demonstrate is the shrinking for 
an initial polarization normal to the scattering plane: 
The element 53, from (9) and (10) is given by 

S 3 =l -M 3 3 
Gt 

= . (27) 
G(2mi+t)+F(2(pI-pT)(pF-pT)+iAPt) 

For elastic scattering from a spinless target or elastic 
Coulomb scattering we have 

G=0, 
F=F(t). 

(28) 

Hence S3—0. I t Is easily shown that Si and 6*2 are also 
zero, i.e., Coulomb scattering preserves the magnitude 
of the polarization vector. The component of the polari
zation vector in the scattering plane rotates, lagging 
the (lab) scattering angle 6 by an amount /?: 

s in£= ik f i2= — M21—-
m(Er+EF) sinfl 

(2FJEF+&) '' 
(29) 

[independent of F{t)~]. Equation (29) shows that in the 
nonrelativistic limit we have /3=0, i.e., the polarization 
vector P 7 preserves its direction and magnitude; in 
the high-energy limit /3=0, i.e., rotation of P J is exactly 
equal to the scattering angle; for small-angle scattering 

^6(m/ET), (30) 

When the target has spin, G^O and | P 7 | > [P^l for 
any nonforward scattering. For the case elastic scatter-

FIG. 2. General direct one-
photon-exchange diagram. 

ing off a proton target, Eq. (25) can be written as 

da 

dQ 
a^p* 

2Mpl [E'+M- (p'EF/pF) cose] {• n (31) 

where the bracket £ ]] is the same as in (25) with the 
substitutions 

\M2 

GJ G2 -\GJ—?*)/\1—)- (32) 

(33) 

where Ge and Gm are the electric and magnetic nucleon 
form factors. In terms of Fi and F2, we have 

Ge^=F1+(Kt/4,M2)F2, 
Gm—F1+KF2, 

where K is the anomalous magnetic moment. At high 
energy we see that the shrinkage S3 is 

iSWVCE 7) 2 . (34) 

IV. DEPOLARIZATION IN M0LLER AND 
BHABHA SCATTERING 

Miller and Bhabha scattering involve only one in
ternal photon. However, these two processes contain 
diagrams, Figs. 3 and 4, which do not belong to the 
class of diagrams considered in Sec. I I I . In the ex
change diagram of M011er scattering and the annihila
tion diagram of Bhabha scattering the incident particle 
p1 and the scattered particle pF do not belong to the 
same charged line. Hence, one cannot^write down an 
equation such as (23). 
I For positron-electron scattering, the cross section for 
the initial spin in direction d1 and final spin in direc
tion a/ can be written as 

o?(pFf do-
—(#i F ,<z / ) = 
dQ, InPpt^+m) (EF-m) 

i/t2+(s+ty 

ii/s2+(s+ty \ 1 / \ 
-f 4m2(s-m2) )+—[ (s+t)2-^ J 

-\—I ±m2(t-m2) ] + ( a / - a / ) ( -(us-Atn*) {s(s+t)+2m2t-4:tn*}-
s2\ 2 J \t2 ts 

/ l 1 m2 \ 
+2(£ 7 - a / ) - { 2 ( ^ V ) ( ^ ' ^ 

\t2 ts s2 J 
/I 1 m2 \\ 

+2(pT-ai
F)[~{2(pF.ai)(pi-pT)+t(pT-aj^ ) , (35 ) 

X/2 ts S2 J l 

2m\ 
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TABLE I. Si, ri} and d<r/dQ for Bhabha scattering. Boldface quantities represent contributions from Fig. 3(a) alone. Incident positron 
energy E1 and energy loss AE are in units of me, whereas the cross section has units a2/me

2. All quantities refer to the laboratory system. 
The integers after the commas denote the powers of 10. 

E* 

200 

100 

60 

20 

2 

A S 

190 
130 

50 
10 

1 
0.1 

80 
40 
20 
1 
0.1 
0.01 

50 
30 
10 

1 
0.1 
0.01 

16 
1 
0.1 
0.001 

0.5 
0.1 
0.01 
0.0001 

Si 

0.90, 
0.30, 
0.58, 
0.69, 
0.22, 
0.16, 

0.58, 
0.44, 
0.22, 
0.35, 
0.25, 
0.25, 

0.65, 
0 .11, 
0.99, 
0.27, 
0.19, 
0.19, 

0.59, 
0.22, 
0.15, 
0.15, 

0.77, 
0.13, 
0.10, 
0.10, 

0 
0 

- 2 
- 5 
- 8 

- 1 0 

0 
- 1 
- 2 
- 7 
- 9 

- 1 1 

0 
0 

- 3 
- 6 
- 8 

- 1 0 

0 
- 4 
- 6 

- 1 0 

- 1 
- 2 
- 4 
- 8 

S: 

0.29, 
0 .41, 
0.26, 
0.20, 
0.47, 
0.33, 

0.12, 
0.23, 
0.27, 
0.77, 
0.53, 
0.50, 

0.22, 
0 .81, 
0.29, 
0.60, 
0 .41, 
0.39, 

0 .11, 
0.53, 
0.33, 
0 .31, 

0.30, 
0.42, 
0.32, 
0 .31, 

L 

- 3 
- 3 
- 4 
- 6 
- 9 

- 1 1 

- 2 
- 3 
_ 4 
- 8 

- 1 0 
- 1 2 

- 2 
- 3 
- 4 
- 7 
- 9 

- 1 1 

- 1 
- 5 
- 7 

- 1 1 

- 1 
- 3 
- 5 
- 9 

r\ 

0.91, 
0 .31, 
0.63, 
0.95, 
0.28, 
0.56, 

0.60, 
0.48, 
0.27, 
0.45, 
0.89, 
0.99, 

0.68, 
0.12, 
0.14, 
0.35, 
0.69, 
0.76, 

0.67, 
0.29, 
0.56, 
0.63, 

0 .81, 
0.85, 
0.83, 
0.83, 

0 
0 

- 2 
- 5 
- 8 

- 1 0 

0 
- 1 
- 2 
- 7 
- 9 

- 1 0 

0 
0 

- 2 
- 6 
- 8 
- 9 

0 
- 4 
- 6 
- 8 

- 1 
- 2 
- 3 
- 5 

r i 

0.82, 
0.35, 
0.65, 
0.32, 
0.63, 
0.60, 

0.24, 
0.77, 
0.58, 
0.10, 
0.96, 
0.10, 

0.55, 
0.32, 
0.50, 
0.80, 
0.74, 
0.77, 

0.12, 
0.69, 
0.60, 
0.63, 

0.78, 
0 .91, 
0.84, 
0.83, 

- 1 
- 2 
_ 4 
- 6 
- 9 

- 1 0 

- 1 
- 3 
- 4 
- 7 
- 9 
- 9 

- 1 
- 2 
- 4 
- 7 
- 8 
_ 9 

0 
- 5 
- 6 
- 8 

- 1 
- 2 
- 3 
- 5 

5 5 

0.10, 
0.79, 
0.15, 
0.52, 
0.50, 
0.50, 

0.94, 
0.38, 
0.92, 
0.20, 
0.20, 
0.20, 

0.96, 
0.56, 
0.63, 
0.56, 
0.55, 
0.55, 

0.94, 
0.50, 
0.48, 
0.48, 

0.17, 
0.47, 
0.44, 
0.43, 

1 
0 
0 

- 2 
- 4 
- 6 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
- 2 
_ 4 
- 8 

0 
- 2 
- 4 
- 8 

Si 

0.91, 
0.38, 
0.40, 
0.13, 
0.13, 
0.13, 

0.62, 
0.12, 
0.24, 
0.51, 
0.50, 
0.50, 

0.69, 
0.20, 
0.16, 
0.14, 
0.14, 
0.14, 

0.66, 
0.13, 
0.13, 
0.13, 

0.55, 
0.17, 
0.16, 
0.16, 

! 
0 
0 

- 1 
- 2 
- 4 
- 6 

0 
0 

- 1 
- 4 
- 6 
- 8 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
- 2 
- 4 
- 8 

- 1 
- 2 
- 4 
- 8 

rz 

0.10, 
0.80, 
0.15, 
0.52, 
0.50, 
0.50, 

0.95, 
0.38, 
0.93, 
0.20, 
0.20, 
0.20, 

0.97, 
0.56, 
0.63, 
0.56, 
0.55, 
0.55, 

0.96, 
0.50, 
0.48, 
0.11, 

0.18, 
0.12, 
0.87, 
0.83, 

1 
0 
0 

- 2 
- 4 
- 6 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
- 2 
- 4 
- 7 

0 
„ 1 
- 3 
- 5 

T2 

0.91, 
0.38, 
0.40, 
0.13, 
0.13, 
0.13, 

0.62, 
0.12, 
0.24, 
0 .51, 
0.50, 
0 .51, 

0.69, 
0.20, 
0.16, 
0.14, 
0.14, 
0.17, 

0.66, 
0.13, 
0.13, 
0.75, 

0.11, 
0.10, 
0.85, 
0.83, 

0 
0 

- 1 
- 2 
- 4 
- 6 

0 
0 

- 1 
- 4 
- 6 
- 8 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
- 2 
- 4 
- 8 

0 
- 1 
- 3 
- 5 

5 

0.10, 
0.80, 
0.15, 
0.52, 
0.50, 
0.50, 

0.95, 
0.38, 
0.93, 
0.20, 
0.20, 
0.20, 

0.97, 
0.56, 
0.63, 
0.56, 
0.55, 
0.55, 

0.97, 
0.50, 
0.48, 
0.48, 

0.16, 
0.40, 
0.37, 
0.36, 

3 

1 
0 
0 

— 2 
- 4 
- 6 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
- 2 
- 4 
- 8 

0 
- 2 
- 4 
- 8 

S 

0.91, 
0.38, 
0.40, 
0.13, 
0.13, 
0.13, 

0.63, 
0.12, 
0.24, 
0 .51, 
0.50, 
0.50, 

0.69, 
0.20, 
0.16, 
0.14, 
0.14, 
0.14, 

0.67, 
0.13, 
0.13, 
0.13, 

0.48, 
0.13, 
0.13, 
0.13, 

3 

0 
0 

- 1 
- 2 
- 4 
- 6 

0 
0 

- 1 
- 4 
- 6 
- 8 

0 
0 

- 1 
- 3 
- 5 
- 7 

0 
- 2 
_ 4 
- 8 

- 1 
- 2 
- 4 
- 8 

dcr/dti 

0.27, 
0.17, 
0.59, 
0.33, 
0.39, 
0.40, 

0.46, 
0.13, 
0.11, 
0.96, 
0.10, 
0.10, 

0.32, 
0.56, 
0.18, 
0.34, 
0.36, 
0.36, 

0.45, 
0.33, 
0.39, 
0.40, 

0 .41, 
0.31, 
0.39, 
0.40, 

- 2 
0 
1 
3 
5 

- 7 

- 1 
1 
2 
4 
7 
9 

- 1 
0 
2 
4 
6 
8 

- 1 
3 
5 
9 

1 
3 
5 
9 

da/dSL 

0.15, 
0.16, 
0.70, 
0.34, 
0.39, 
0.40, 

0.33, 
0.15, 
0.13, 
0.97, 
0.10, 
0.10, 

0 .21, 
0.63, 
0 .21, 
0.34, 
0.36, 
0.36, 

0.35, 
0.34, 
0.39, 
0.40, 

0.56, 
0.33, 
0.39, 
0.40, 

- 2 
0 
1 
3 
5 
7 

- 1 
1 
2 
4 
7 
9 

_ 1 
0 
2 
4 
6 
8 

- 1 
3 
5 
9 

1 
3 
5 
9 

where s and u are the usual scalar variables 

s^(pi+pT)2y (36) 

u=(pF-pT)2=^m*-s-t, 

and p1, pF, pT are physical four-momenta of the 
particles (energy component>0). The contributions to 
(35) from the one-photon-exchange diagram, Fig. 3(a), 
from the annihilation diagram, Fig. 3(b), and the inter
ference term can be identified by a denominator l//2, 
1/s2, and 1/ts, respectively. 

The corresponding expression for the Miller scatter
ing can be obtained by making the following substitu
tions in the [ ] of (35): 

-pT<r->p* aS -a/, (37) 

V. NUMERICAL RESULTS AND DISCUSSION 

The cross section and the polarization matrix M 
[of Eq. (11)] completely characterize the single scatter
ing by one-photon exchange from an unpolarized target. 
Instead of numerically tabulating matrix elements of 
M, we computed the quantities riy 

Ti=l—Mu i = l , 2, (SS) 

and Si [of Eq. (13)]. The three Si give directly the 
shrinkage or decrease in magnitude of the incident 
polarization vector for a single scattering. They allow 
us to give a minimum for the depolarization in multiple 
scattering (due to the particular scattering process 
being considered). The u give us the fraction in the 
laboratory system of the incident polarization vector 
in the scattering plane which does not follow the 
scattering of the particle. (We stress again that M', 
the corresponding matrix in the cm. frame, is related 

to If by a rotation. On the other hand, the shrinkage 
elements Si are the same in both the laboratory and 
the cm. frame; this is not true, however, for any 
arbitrary Lorentz frame.) Clearly it is much simpler 
to work in the laboratory system in treating multiple 
scattering. The n allow us to give a maximum for the 
depolarization in multiple scattering.14 

The five quantities Si and ri were determined for 
polarized positrons scattering off unpolarized electrons 
by numerically evaluating (35). The calculations were 
performed using double-precision arithmetic on the 
Stanford 7090 computer. [We note that for large 
incident energy one gains more accuracy by evaluating 
cross sections in the center-of-mass system and then 

FIG. 3. Bhabha p 

scattering of polar
ized incident posi
tron off unpolarized 
target electron. 

14 In the literature are many calculations of depolarization 
effects in a single scattering; however, estimates of the depolariza
tion in multiple scattering based on these can sometimes be 
misleading. For example, using estimates of depolarization in the 
cm. frame of the collision [without using the rotation of Eq. (19)] 
or considering only the component of final polarization in the 
direction of the incident particle may tend to over estimate the 
depolarization effects. Consider small-angle Coulomb scattering 
where Eq. (30) holds. At high energies, the polarization direction 
clearly follows the direction of motion. On the other hand, at 
low energies, tn/E~l, and the direction of polarization remains 
fixed in the laboratory system (parallel to its original direction). 
Thus, in multiple scattering, at high energies it is more reasonable 
to estimate the depolarization using the u but at low energies it 
is better to consider the components of the polarization along 
fixed directions in the laboratory system. 
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(o) (b) 

FIG. 4. Miller scattering of polarized incident 
electron off unpolarized target electron. 

performing the transformation (17) to the laboratory 
system.] The results are presented in Table I. We 
give separately the contributions from the direct one-
photon-exchange diagram Fig. 3(a) (denoted by bold
face) as well as the full results from the direct, annihila
tion and interference terms. We have 

and 
s=2m2+2EIme 

t=—2meAE, 

where AE is the energy lost by the positron. 
The results of Table I for individual scatterings may 

be summarized as follows (again all quantities refer to 
the laboratory system): 

For small energy loss AE/me<^l (and E^>me): 

(1) To lowest order in t, 

Si*?/?, 

= 1,2 

(39) 

i=2, 3. 

(2) In general the condition for the asymptotic ex
pressions (39) to be valid is simply AE/m/gil. How
ever, in the case of r2, it also depends on s: for sizeable 
(E^AE/m^l 

r2^t2/s2. (40) 

(3) The numerical values for r* in the asymptotic 
region are independent of L Indeed they, as well as 
the one-photon exchange r,-, reduce to the pure Coulomb 
result, Eq. (2). 

(4) The Si are a factor larger than the one-photon-
exchange contribution S»- even in the asymptotic region. 

(5) Again even in the asymptotic region the Si 
(and Si) are a factor larger for the transverse polari
zations 2 and 3 than the longitudinal polarization 1. 

(6) For sizeable energy loss AE/me> 1 

(7) The longitudinal quantities ri, Si are small com
pared to ri, Si. 

(8) And most important, Si is comparable in mag
nitude tO Yi 

Si^fi. 

(9) Finally for AE* '^EI-me 

also 
Sl~2(tne/E

1)2 

Si^l for i = 2 , 3 . 

It is interesting to examine the above conclusions in 
the limit that m —» 0, comparing them with our notions 
of helicity conservation: (a) The helicity argument for 
a massless particle only concerns longitudinal polari
zation. (b) Si does approach zero for tne/E—>0 re
gardless of AE. (c) On the other hand, Si —» 1 for 
AE-^EI~m even for me/E—^0. This is due to the 
following: For 180° scattering in the cm. and m/E—Q, 
the direct amplitude preserves the helicity of the 
positron while the annihilation amplitude reverses the 
helicity of the positron. The relationships between the 
initial and final helicities are shown in Fig. 5, and can 
be understood simply in terms of angular momentum 
conservation. [Also this follows from the w/E=0, 
—t=s, u=0 limit of Eq. (35).] Since these amplitudes 
are equal in magnitude and do not interfere, it follows 
that the final state of the positron is unpolarized. 

Calculations for polarized muons scattering off un
polarized electrons were performed using (26). Here 

and 

s= me2+mfi
2+2meE

I 

-t=2meAE. 

The maximum energy loss is 

A£max= 2mep
I2/{m2+m2+2meE

I), (41) 

which nonrelativistically is 4me/w/x(£7—%). The re
sults are presented in Table II. For the same incident 
kinetic energy and same energy loss, the "maximum 
depolarization along the direction of motion," r\ is 
much greater for fx than for e+. Note [Eq. (41)] that 
the maximum energy loss for muon-electron collisions 
is constrained by kinematics to be small. 

"DIRECT" "ANNIHILATION" 
Before Collision After Collision Before Collision After Collision 

.. I * f t - e-l f e-tt 

- I t If - I t l ! 

(o) (b) 

FIG. 5. Pictorial understanding of depolarization of longi
tudinally polarized incident e+ scattering by 180° in cm, system 
off unpolarized e~ in the limit me/E —> 0. The direct interaction 
(a) conserves helicity so by conservation of angular momentum 
only the (+ ) helicity state of the e~ interacts. The intermediate 
state of the annihilation interaction consists of one photon so 
that in (b) only the (—) helicity state of the e~ interacts. By 
angular momentum conservation, the helicity of the e+ flips and 
amplitudes for (a) and (b), which are equal in magnitude, do not 
interfere. Hence the final positron is unpolarized. 
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TABLE II. Si, u and da/dtt for muons scattering off electrons. E1 and AE are in units of me, whereas the cross 
section has units a2/me

2. All quantities refer to the laboratory system. 

E1 

400 

350 

300 

270 

230 

AE 

4J0 
2.0 
1.0 
0.1 
0.01 
0.001 

3.5 
2.0 
1.0 
0.1 
0.01 
0.001 

2.0 
1.0 
0.1 
0.01 
0.001 

1.0 
0.1 
0.001 

0.4 
0.1 
0.001 

5: 

0.15, 
0.13, 
0.18, 
0.92, 
0.84, 
0.84, 

0.25, 
0.27, 
0.34, 
0.16, 
0.14, 
0.14, 

0.79, 
0.79, 
0.30, 
0.27, 
0.26, 

0.15, 
0.48, 
0.40, 

0.33, 
0.10, 
0.77, 

t 

- 3 
- 4 
~ 5 
- 8 

- 1 0 
- 1 2 

- 3 
- 4 
- 5 
- 7 
- 9 

- 1 1 

- 4 
- 5 
- 7 
- 9 

- 1 1 

- 4 
- 7 

- 1 1 

- 5 
- 6 

- 1 1 

n 
0.16, - 3 
0.13, - 4 
0.24, - 5 
0.22, - 6 
0.23, - 7 
0.23, - 8 

0.25, - 3 
0.27, - 4 
0.46, - 5 
0.41, - 6 
0.44, - 7 
0.44, - 8 

0.79, - 4 
0.10, - 4 
0.94, - 6 
0.10, - 6 
0.10, - 7 

0.18, - 4 
0.18, - 5 
0.19, - 7 

0.77, - 5 
0.63, - 5 
0.79, - 7 

S2 

0.93, 
0.17, 
0.41, 
0.40, 
0.40, 
0.40, 

0.13, 
0.25, 
0.57, 
0.57, 
0.55, 
0.55, 

0.43, 
0.86, 
0.82, 
0.82, 
0.82, 

0.11, 
0.11, 
0.11, 

0.20, 
0.16, 
0.17, 

- 4 
- 4 
- 5 
- 7 
- 9 

- 1 1 

- 3 
- 4 
- 5 
- 7 
- 9 

- 1 1 

- 4 
- 5 
- 7 
- 9 

- 1 1 

- 4 
- 6 

- 1 0 

- 5 
- 6 

- 1 0 

U 

0.10, 
0.17, 
0.47, 
0.25, 
0.23, 
0.23, 

0.13, 
0.25, 
0.69, 
0.45, 
0.44, 
0.44, 

0.43, 
0.11, 
0.99, 
0.10, 
0.10, 

0.14, 
0.18, 
0.19, 

0.64, 
0.63, 
0.79, 

- 3 
- 4 
- 5 
- 6 
- 7 
- 8 

- 3 
- 4 
- 5 
- 6 
- 7 
- 8 

- 4 
- 4 
- 6 
- 6 
- 7 

- 4 
- 5 
- 7 

- 5 
- 5 
- 7 

5 

0.11, 
0.17, 
0.36, 
0.32, 
0.31, 
0.31, 

0.13, 
0.25, 
0.50, 
0.42, 
0.41, 
0.41, 

0.43, 
0.73, 
0.57, 
0.56, 
0.56, 

0.98, 
0.71, 
0.69, 

0.18, 
0.99, 
0.95, 

3 

- 3 
- 4 
- 5 
- 7 
- 9 

- 1 1 

- 3 
- 4 
- 5 
- 7 
- 9 

- 1 1 

- 4 
- 5 
- 7 
- 9 

- 1 1 

- 5 
- 7 

- 1 1 

- 5 
- 7 

- 1 1 

d<r/d£l 

0.10, 0 
0.68, 0 
0.32, 1 
0.37, 3 
0.37, 5 
0.37, 7 

0.88, - 1 
0.46, 0 
0.24, 1 
0.28, 3 
0.29, 5 
0.29, 7 

0.27, 0 
0.16, 1 
0.21, 3 
0.21, 5 
0.21, 7 

0.12, 1 
0.17, 3 
0.17, 7 

0.65, 1 
0.12, 3 
0.12, 7 

VI. DEPOLARIZATION IN MULTIPLE SCATTERING 

Let us summarize the results of our calculations 
(which take into account only graphs 2, 3, and 4) as 
they pertain to multiple scattering.15 Although the nu
merical results of the previous section make it clear 
that for very large momentum transfers the depolari
zation can be appreciable, we are going to argue that 
this has little effect on the slowing down of high-energy 
beams of positrons or muons. In particular we shall 
conclude that under the conditions of the Dick 
experiment the polarization should be practically 
unchanged.1'2'16 

In general, the multiple-scattering process can be 
treated either by Monte Carlo methods or by solving 
the Boltzmann equation. For elastic Coulomb scatter
ing alone, the Boltzmann equation, including polariza
tion effects has been solved by Toptygin.17,18 The full 
Boltzmann treatment, using our Eq. (35) and the 
direct, one-photon exchange with the nucleus [Eq. (25)] 
is extremely complicated. However, such a rigorous 
treatment is not necessary; it is quite easy to show that 
there is only negligible depolarization by the one-photon 
processes just mentioned. We are now considering the 

15 H. Olsen and L. C. Maximon (Ref. 6) have considered the 
depolarization due to the emission of a single photon. 

16 The depolarization in this energy range is also small for 
transversely polarized positrons or muons. 

1 7 1 . N. Toptygin, Zh. Eksperim. i Teor. Fiz. 36, 488 (1959) 
[English transl.: Soviet Phys.—JETP 9, 340 (1959)]. 

18 The effect of the "Coulomb" part of the Bhabha scattering 
[i.e., using Eq. (30) only] on the depolarization has been con
sidered by C. Bouchait and J. M. Levy-LeBlond, Ref. 5. 

following experimental situation1: Longitudinally polar
ized positrons of energy ^50 MeV which slow down 
to ^10 MeV in a Be absorber but remain within 8° 
of their original direction of motion. 

First of all, for small energy loss AE, all the polariza
tion effects in Bhabha scattering reduce to those of 
Coulomb scattering [just a rotation of the polarization 
vector, cf. remark (3) of Sec. V]. As is well known, for 
small-angle scattering, these effects are small and the 
numerical results in Table I illustrate this. Another 
feature which Table I shows is that for a given total 
energy loss, there is a much greater loss of polarization if 
the energy is lost in a few collisions than if the energy 
is lost in many small-angle collisions although the 
differential cross section tells us that the former 
process is much less likely than the later.19 Let us 
consider an estimate for the polarization loss which 
uses a fixed, average energy loss per collision (AE). In 
Be, (A£)<100 eV.20 The maximum longitudinal de
polarization in such a collision is of order 10~10 and in 
loosing 40 MeV there are required ^4X105 such 
collisions. Thus, the "average" loss of polarization in 
passing through the medium is very small (^10~4). 
The one-photon-exchange process considered leads to 

19 For example, if a 50-MeV positron, longitudinally polarized, 
loses 15 MeV by a single collision the maximum depolarization 
in the longitudinal direction is rt = 0.015 and the shrinkage is 
0.013. If instead this energy loss takes place in 30 collisions 
averaging 0.5 MeV then we have the loss of polarization in the 
longitudinal direction is less than 10~~6. 

20 B. Rossi, High Energy Particles (Prentice Hall, Inc., Engle-
wood Cliffs, New Jersey, 1952), Chap. 2. 
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completely negligible depolarization for the slowing 
down of a 50-MeV positron to 10 MeV.21 

On the other hand, there are cases where the de
polarization effects will not be small and we shall 
conclude with a few remarks concerning them. As 
noted above, we have omitted the effect of higher 
order processes such as bremsstrahlung which will 
have to be included. The equation (35) for depolariza
tion in the one-photon exchange will also be modified, 
especially at lower momentum transfers and for slower 
projectiles because the electrons in the absorber are 
initially in bound states rather than free-particle states, 
i.e., a Coulomb field is present. 

I t is not immediately evident whether the "shrinkage" 
or rotation effects are going to account for most of the 
depolarization. The rotation of the spin through an 
angle 77 in a given collision gives an rms angle rjN112 in 
N collisions; however, if the "shrinkage" in a single 
collision is e then N such collisions give a shrinkage 
^Ne. In other words, if the scattering process cannot 
polarize but can only rotate and shrink the polarization 
vector then the rotation is a random walk process but 
the shrinkage is a cumulative effect. (In our previous 
estimates, we have treated both effects as cumulative 
and so obtained an upper bound to the depolarization.) 

For large momentum transfer collisions there is 
large depolarization, regardless of the energy of the 
incident particles. Thus if the experimental setup is 
such as to select particles which have undergone high 
momentum transfer scatterings, there will be considera
ble depolarization. The numbers in Table I also show 
the general feature that the depolarization of a longi
tudinally polarized beam (direction 1) is less than that 
of a transversely polarized (directions 2 and 3) beam. 
Also, for a given energy loss the depolarization is 
larger, the lower the initial energy.14 When the multiple-
scattering depolarization effects are large enough to be 
significant, a much more careful treatment, possibly 
the full Boltzmann equation, must be used; it is not 
sufficient to consider only the average momentum 
transfer and polarization loss. This is because only 
experimental conditions which select large momentum 
transfer scatterings will show any important depolari
zation effects. Such collisions are much less frequent 
than those having low momentum transfers so the 
fluctuations will be much larger. The simple approxi
mation which considers only a succession of equal 
"average" collisions will not hold. We note also that the 
small-angle, Coulomb approximation to the cross section 
and polarization terms [ that is, the expansion of Eq. 

21 C. Bouchait and J. M. Levy-LeBlond, Ref. 5, have made 
numerical estimates of the depolarization due to bremsstrahlung 
using the results of Ref. 6. For the experimental conditions of 
L. Dick, Ref. 1, they obtain a depolarization of about 7%. How
ever, this may be an overestimate, see Ref. 14. Thus depolariza
tion due to bremsstrahlung, apparently the most important 
process, is much too small to explain the experimental result of 
Dick et al. 

(35) in powers of / ] will not be good in the high momen
tum transfer region where there is large depolarization. 
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APPENDIX: THE POLARIZATION IN AN ARBITRARY 
REACTION OF A SPIN-| PARTICLE 

We now consider the most general scattering process 
whereby a spin-J particle of momentum p1 and spin 
direction a/ hits an unpolarized target of momentum 
pT and another spin-f particle of momentum pF and 
spin direction <nF is measured in the final state. All 
other details of the final state are to be ignored. For 
the cross section, a,iF and a/ can appear at most 
linearly so we have: 

(da/dtt) (a/, a/) = A+b • a/-{-c- a/ 

+ W)li{ai
F)vf,v. (Al) 

Now a/, diF are axial vectors and da is a scalar. In 
order to conserve parity (we shall always assume this) 
A must be a scalar, b and c pseudovectors and / a 
tensor. Because only one of the final particles is de
tected, the only independent vectors we have to con
struct b, c, f are p1, pF, pr. We see immediately that 
the only possible candidates are: 

b'ajT=ajT-nB, 

caiF~aiF'nC, 

^(a/-pF)(ai
F'P^F1+(a/'pT)(ai

F^p^F2 

+ W • PF) (af' PT)F*+ (a/ • pT) (a/ • pT)F, 

+ (a/>n)(ai
F-n)Fb, (A2) 

where we define nfi=e(iJLyp
I,pF,pT)=eflVpap/ppF(pT)<r 

and A, B, C, Fk are all scalar functions of the energy 
(PT+PT)2, the momentum transfer, (pT—pF)2 and the 
quantity (pF—pT)2- We have eliminated the form 
(a/ • a/) since the four-vectors p1, pF, pT and n are all 
independent and we can thus construct the tensor gM„ 
from bilinear combinations of them. 

If we choose the basis set at
T, a/, i= 1, 2, 3 defined 

in Sec. I I Eq. (6) et seq. then this general scattering 
can be written in either the c m . or laboratory frame 
o c22,23 • 

22 A matrix of this form was discussed by S. Chandresekhar, 
Radiative Transfer (Dover Publications, Inc., New York, 1960), 
p. 37, Eq. (201). In this Appendix our object is to obtain the 
form of this matrix for elastic or inelastic collisions, using sym
metry properties alone. For spin-! particle scattering this matrix 
was also considered by W. H. McMaster, Rev. Mod. Phys. 33, 
8 (1961). It should be noted that in this reference everything is 
treated only in the cm. system. Also Eq. (48) of this reference 
erroneously states that polarization can be produced from an 
unpolarized initial state in Moller scattering. 

23 See also the second article in Ref. 3 where general features 
of direct one-photon-exchange processes are discussed. 
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[<j>F PxF) [Mn Mu 0 0 1 W Px1) 
UF PiF\\Mii M22 0 0 L ' PA ,AX, 
UF P*F\ 0 0 (a,I'n)(azF'n)Fs (<HF-n)C\ U1 P3

7 ' { } 

[ <t>F J I 0 0 (aJ-tfiB A J [ <£J J 

Af<y= (^T)M/\U h i= 1, 2. (A4) 
The flux of particles in the beam is <p, and we have used 
n-#i= n-a<i— 0, az• £ J= az'pT=az'pF=0for a*= a/, a^. 
Let us call the square matrix on the right-hand side of 
(A3) M. Striking out the last row and column of M 
gives a matrix closely related to the matrix M of Sec. 
II, Eqs. (11) and (20). All quantities appearing in 
Eq. (A3) are Lorentz covariant, however, there is the 
usual rotation of coordinate axes describing the final 
spin [which is defined by Eq. (18)] when one trans
forms from the cm. to the lab system. This notation 
makes it clear that, in general, the effect of a scattering 
is to induce a polarization (C terms) in addition to the 
rotation and shrinkage effects discussed in Sec. II of 
this article. Since there can be a final-state polarization 
in the direction n when there is no polarization present 
in the initial state, the term "shrinkage" is not ap
propriate, but the unpolarized component can still be 
calculated by subtracting the magnitude of the polari
zation vector, aF, from 1. Because the term B in Eq. 
(A3) is not zero, the differential cross section summed 
over final spins, will depend on the initial polarization 
Pz1. In the general case it is therefore simpler to work 
directly with the matrix (A3) and not to define a 
"shrinkage" Si. 

It is a well-known result24 which applies when time 
reversal is good and the initial state is the same as the 
final state (elastic processes) is that B=C. This equality 
states that the polarizing power of the reaction is 
equal to the analyzing power. We shall now establish 
that in the cm. under the same conditions —Mn 
= M2i in (A4) and hence M has only 6 independent 
elements. The method of proof is the same as that used 
by Bell and Mandel25 to show that B=C. We consider 

24 L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956). 
25 J. Bell and F. Mandel, Proc. Phys. Soc. (London) 71, 272, 

867(1958). 

(a) (b) 

<A'+M2I> ( c ) J ^ V U ' + M i , ) 

(A-MJ2) =(A'+M'2I) 

FIG. 6. Diagrams to illustrate the proof that —M\^—Mi\ in 
the cm. for an elastic, parity conserving, process. The cross 
section for (a) is proportional to A'-\-M%\, etc. 

a scattering through an angle 6f in the cm. from a 
polarization state ai1 to a state a2

F, Fig. 6(a), the time 
reversed reaction, Fig. 6(b) and the reaction — a^1, aiF, 
Fig. 6(c). Because the process is elastic, Fig. 6(b) is 
the same as Fig. 6(c) [rotate (b) by 180° about an 
axis which is in the direction of the initial momentum]. 
Thus we have — M21—M12. This proof fails in the 
laboratory frame because the three-momenta of the 
initial and final states are not equal and therefore (b) 
is not the same as (c). However, if there is no shrinkage 
[for example, Coulomb scattering, see Eq. (29)], then 
Mi2=— M21 is also true in the laboratory system be
cause the final state is simply a rotation in the scatter
ing plane times the initial state. One can readily obtain 
a condition on M in the laboratory by using the anti
symmetry in the cm. and the rotation defined in Eqs. 
(17) and (18). (This proof gives the relative sign be
tween Mu and M21] however, particular conventions 
in naming angles enter into this equation and therefore 
the sign will have to be checked in any specific applica
tion.) We have made use of this property of M to check 
the numerical results of Sec. V. 


